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1  |   INTRODUCTION

In learning and decision making, finite cognitive resources 
should be allocated so as to optimize decisions about behav-
iorally relevant outcomes, while minimizing expenditure of 
resources on irrelevant or inconsequential tasks (Boureau, 
Sokol‐Hessner, & Daw, 2015; Collins & Frank, 2012; Pitz 
& Sachs, 1984; Shenhav et al., 2017; Simon, 1976). One 

cognitive domain in which this trade‐off arises is belief up-
dating, the process by which relevant new information is in-
tegrated with prior beliefs to produce a new belief state that 
can be used to formulate appropriate responses to events in 
one's environment (Achtziger, Alós‐Ferrer, Hügelschäfer, &  
Steinhauser, 2014; Gläscher, Daw, Dayan, & O'Doherty, 
2010; Wunderlich, Dayan, & Dolan, 2012). In environments 
characterized by uncertain contingencies or unpredictable 
dynamics, belief updating has obvious survival implica-
tions; however, many of the cognitive and neurophysiolog-
ical factors arbitrating this component of decision making 
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Abstract
Belief updating entails the incorporation of new information about the environment 
into internal models of the world. Bayesian inference is the statistically optimal strat-
egy for performing belief updating in the presence of uncertainty. An important open 
question is whether the use of cognitive strategies that implement Bayesian inference 
is dependent upon motivational state and, if so, how this is reflected in electrophysi-
ological signatures of belief updating in the brain. Here, we recorded the EEG of 
participants performing a simple reward learning task with both monetary and non-
monetary instructive feedback conditions. Our aim was to distinguish the influence 
of the rewarding properties of feedback on belief updating from the information con-
tent of the feedback itself. A Bayesian updating model allowed us to quantify differ-
ent aspects of belief updating across trials, including the size of belief updates and the 
uncertainty of beliefs. Faster learning rates were observed in the monetary feedback 
condition compared to the instructive feedback condition, while belief updates were 
generally larger, and belief uncertainty smaller, with monetary compared to instruc-
tive feedback. Larger amplitudes in the monetary feedback condition were found for 
three ERP components: the P3a, the feedback‐related negativity, and the late positive 
potential. These findings suggest that motivational state influences inference strate-
gies in reward learning, and this is reflected in the electrophysiological correlates of 
belief updating.
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remain unclear. In particular, one open question is how belief 
updating might be affected by the presence of reward and 
whether reward directly impacts on motivational state and, by 
doing so, improves belief updating (Achtziger, Alós‐Ferrer, 
Hügelschäfer, & Steinhauser, 2015; Correa et al., 2018). This 
question is of particular importance given the ongoing debate 
in educational psychology and behavioral economics regard-
ing the efficacy of using rewards to incentivize performance 
(Hidi, 2016; Lazear, 2000).

Bayesian theories of cognition propose that the cognitive 
processes underlying human decision making in a variety of 
tasks can be accurately explained as a form of Bayesian infer-
ence (e.g., Austerweil, Gershman, Tenenbaum, & Griffiths, 
2015; Chater & Oaksford, 2008; Friston et al., 2015; Knill & 
Pouget, 2004; Körding, 2007; Ma & Jazayeri, 2014; Richards &  
Knill, 1996). Bayesian inference is the statistically optimal 
strategy for unbiased belief updating (Bennett, Murawski, & 
Bode, 2015; Kolossa, Kopp, & Fingscheidt, 2015; Nassar, 
Wilson, Heasly, & Gold, 2010; Stern, Gonzalez, Welsh, & 
Taylor, 2010). For a behaving agent, Bayesian belief updating 
involves repeatedly revising a prior belief distribution based 
on incoming sensory data, where at each time point belief 
about the probability of an event (posterior distribution) is 
proportional to the product of the agent's previous belief (prior 
distribution) and the likelihood of the event given sensory 
data. Using a Bayesian modeling framework, Bennett et al.  
(2015) recently developed a novel reward learning paradigm 
that required participants to use information provided by 
stimulus feedback to update their beliefs after each trial. In 
particular, participants in this task learned the association be-
tween the contrast levels of a dynamically changing checker-
board stimulus and monetary reward values, which provided 
an indication of the location of a hidden “target” contrast. 
A simple Bayesian model provided dynamic estimates of 
the belief states of each participant on each trial, which  
allowed for trial‐by‐trial quantification of (a) the uncertainty of  
beliefs, and (b) the magnitude of belief updates. Importantly, 
these estimates of belief state were found to correlate with 
the amplitude of components of the ERP, including a positive 
relationship between P3 amplitudes and belief update magni-
tude that was not accounted for by simpler models (Bennett 
et al., 2015). This finding was consistent with earlier theories 
and other empirical findings linking the P3 and Bayesian be-
lief updating (Kolossa et al., 2015; Kopp, 2008).

While Bayesian models often fit learning behavior 
well overall, their goodness‐of‐fit can deteriorate sharply 
as the cognitive demands of Bayesian inference increase 
(Payzan‐LeNestour & Bossaerts, 2011) or when simpler, 
and less effortful, heuristic strategies conflict with Bayesian  
inference (Achtziger et al., 2015; Charness & Levin, 2005). 
This suggests that discrepancies between Bayesian mod-
els and human behavior may be in part motivational: since 
full Bayesian inference can be computationally demanding, 

participants' motivation to engage in effortful cognition may 
moderate their use of strategies that resemble Bayesian belief 
updating (Lieder & Griffiths, 2015; Shenhav, Botvinick, & 
Cohen, 2013). Since an important factor that directly mod-
ulates motivation is the availability of reward, this motiva-
tional account predicts that the use of monetary performance  
incentives in learning tasks (as in the study by Bennett et al., 
2015) may affect the behavioral strategies employed by par-
ticipants. Monetary incentive has been linked with improved 
performance in various learning paradigms (e.g., Bonner & 
Sprinkle, 2002; Kleih, Nijboer, Halder, & Kübler, 2010), 
but the effect of monetary incentives on participants' use of 
Bayesian belief updating is an open question. In addition, 
we would predict that any motivational influences on belief 
updating should also manifest in the electrophysiological  
indices of belief updating, such as the P3 ERP component. 
In preliminary support of this notion, P3 amplitudes are also 
known to be influenced by the motivational value of stimuli 
(Sato et al., 2005).

In the present study, we investigated the effect of mo-
tivational state, manipulated in terms of financial reward 
value, in a reward learning task with graded feedback similar 
to that introduced by Bennett et al. (2015). Here, however, 
our approach allowed us to disambiguate belief updating 
based on the information content provided at feedback itself 
from the reward value associated with that feedback. In this 
task, feedback was delivered in the form of either monetary  
reward (monetary feedback condition, as in Bennett et al., 
2015) or simple instructional directives, where no extrinsic 
reward was provided (the instructive feedback condition). 
Importantly, feedback values were constrained such that the 
information content of feedback was identical across the two 
feedback conditions. As in Bennett et al. (2015), we employed 
a Bayesian modeling framework to quantify trial‐by‐trial  
aspects of belief updating, namely, belief update magnitude 
and belief uncertainty.

Further, we probed the neural mechanisms underlying 
belief updating in the two feedback conditions by examining 
three ERP components associated with motivation, learning, 
and/or reward processing. We note that our aim was not to 
conduct an exhaustive exploration of the role of Bayesian 
inference in reward learning, which is an active topic of  
research in the machine learning literature (e.g., Ghavamzadeh, 
Mannor, Pineau & Tamar, 2015). Rather, we aimed to exam-
ine the influence of certain higher‐level motivational factors 
(tied to reward availability) on human belief updating and 
to measure the potential electrophysiological correlates of 
this influence. For this, we investigated three ERP compo-
nents: the P3 (Bennett et al., 2015; Goldstein et al., 2006; 
Jepma et al., 2016; Kleih et al., 2010; Polich, 2007; Sato 
et al., 2005), the feedback‐related negativity (FRN; Yeung 
& Sanfey, 2004), and the late positive potential (LPP; Ito, 
Larsen, Smith, & Cacioppo, 1998). The connection between 
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individuals' revision of probabilistic beliefs and the amplitude 
of the P3 is consistent with the hypothesis that it reflects a 
Bayesian belief‐updating mechanism (Bennett et al., 2015; 
Kolossa et al., 2015; Kopp, 2008; Mars et al., 2008). This 
theory suggests that P3 amplitudes reflect the degree to which 
internal models of the environment are updated and predicts 
that larger P3 amplitudes would be tied to greater engage-
ment of cognitive strategies that implement Bayesian belief 
updating. Since the increase in P3 amplitude has been shown 
to be proportional to the gradual increase of monetary feed-
back (Goldstein et al., 2006; Kleih et al., 2010; Sato et al., 
2005), we hypothesized that higher P3 amplitudes following 
monetary feedback would be observed in addition to an in-
crease elicited by the amount of belief updating (the update 
magnitude). Traditionally, the P3 has been partitioned into the 
frontocentral P3a subcomponent and the centroparietal P3b 
subcomponent (Polich, 2007). Specifically, it is the P3a that 
has been associated with the magnitude of belief updating 
(Bennett et al., 2015). This suggestion is also consistent with 
a functional imaging study indicating the frontal encoding of 
belief update size at the anterior cingulate cortex (O'Reilly 
et al., 2013), a region considered to be a potential substrate 
for the P3a (Polich, 2007). The Bayesian account of P3a am-
plitude is generally consistent with the prominent context‐ 
updating theory of the P3, which argues that P3 amplitude 
is an index of the revision of schemata concerning stimu-
lus context (Donchin & Coles, 1988). This revision process 
is analogous to the updating of prior beliefs in the Bayesian 
sense. FRN amplitude was also investigated because of its im-
portance as an index of outcome evaluation in reward learn-
ing and feedback processing (Achtziger et al., 2015; Frank, 
Woroch, & Curran, 2005; Holroyd & Coles, 2002). Finally, 
in research studying the processing of emotional stimuli, LPP 
amplitude is thought to differentially encode positive and neu-
trally valenced stimuli (Keil et al., 2002; Schupp et al., 2000); 
we therefore sought to investigate whether LPP amplitude dif-
fered between monetary and instructive feedback conditions.

2  |   METHOD

2.1  |  Participants

Twenty‐three participants were recruited from among stu-
dents of the University of Melbourne, Australia (mean 
age = 23.40; age range 19‒31; 17 female, 6 male). Participants 
were right‐handed, had normal or corrected‐to‐normal vis-
ual acuity, and no medical history of any neurological disor-
der. Informed consent was acquired from all participants in 
accordance with the Declaration of Helsinki, and approval 
was obtained from the University of Melbourne Human 
Research Ethics Committee (ID 1339694). Participants  
received monetary compensation for participation, and in 

addition they received a financial reward that was propor-
tional to task winnings in the monetary feedback condition 
only (M = $25.24; SD = 4.05, for details, see below). For all 
participants, total remuneration value was within the range 
AUD $20‒$30.

Four participants were excluded from analysis of EEG 
data: one because of an excessive number of artifacts (more 
than 80% of trials affected), one because of a failure of the 
eyeblink artifact removal routine, and two additional par-
ticipants because of computer error during EEG acquisi-
tion. Final EEG analyses were therefore performed on data 
provided by 19 participants (mean age  =  23.75; age range 
19‒31; 13 female, 6 male).

2.2  |  Behavioral task

Participants performed a reward learning task modified 
from that first introduced by Bennett et al. (2015) while 
EEG was recorded. This task required participants to 
learn the fixed target contrast of a dynamically changing 
grayscale checkerboard stimulus (Figure 1a) on the basis 
of feedback presented across subsequent trials. On each 
trial, the checkerboard was presented for up to 30 s, dur-
ing which time its contrast changed linearly (alternately in-
creasing and decreasing, changing direction at upper/lower 
contrast bounds).

At the start of a block of trials, participants were initially 
unaware of the target contrast. By a process of trial and error, 
they selected a contrast on each trial and were given visual 
feedback on how close their choice was to the hidden tar-
get contrast. On each trial, initial contrast, initial direction of 
contrast change (increasing/decreasing), and rate of change 
were randomized using the same parameters as in Bennett 
et al. (2015). At any time during stimulus presentation, the 
participant could choose the contrast displayed on screen by 
pressing a button with the right index finger. After a 2‐s delay 
in which the chosen contrast remained on screen, participants 
received feedback regarding their chosen contrast. The pres-
ent study employed a novel variant of this task in which feed-
back regarding the target contrast could be either monetary 
(as in the original paradigm of Bennett et al., 2015) or purely 
instructive. In the monetary condition, this feedback was pre-
sented in the form of monetary reward (e.g., “You won 15 
cents”) according to a triangular function M (Equation 1) of 
the distance between the chosen and the target contrast (see 
Figure 1b):
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where t is the trial number in the sequence, rt is the target 
contrast on trial t, and xt is the participant's chosen contrast 
on trial t. Double bars denote rounding to the nearest integer 
cent. Responses closer to the target contrast earned propor-
tionally more (up to a maximum of 25 cents per trial, rounded 
to the nearest integer cent), while participants received zero 
reward for responses at greater than 15% contrast distance 
from the target.

In the instructive condition, feedback took the form of an 
explicit instructional directive informing the participant of 
the distance between their chosen contrast and the target (e.g., 
“You were 11.25% away from the target”; see Figure 1c), 
with no monetary incentive attached. For responses at greater 
than 15% distance from the target contrast, participants were 
informed only that their response was “too far” from the tar-
get. As such, in the instructive feedback condition, the reward 

F I G U R E  1   (a) Trial schematic. Following a self‐paced button press, a checkerboard stimulus was presented with a linearly changing contrast. 
The participant could at any time select the contrast displayed on screen by pressing a button with the right index finger. The trial continued until 
a button was pressed or until stimulus duration exceeded 30 s. Following the participant's choice, the selected contrast remained on screen for 2 s, 
after which time the monetary (M) or instructive (I) feedback associated with the chosen contrast was displayed for 2.5 s. In the event that no button 
was pressed within 30 s, feedback was a message reminding the participant of the task instructions. (b) Feedback mapping for monetary feedback 
condition. The mapping was a symmetrical triangular function with a centre of 0% contrast difference, a half‐width of 15% contrast difference, and 
a height of 25 cents. As such, received reward was maximal when the participant responded at the target contrast and decreased with increasing 
difference of chosen contrast from the target. Reward was zero for responses at greater than 15% distance. Feedback received was rounded to the 
nearest whole‐cent value. (c) Feedback mapping for the instructive feedback condition. For responses at less than 15% difference from the target, 
participants were informed of the difference between the chosen contrast and the target contrast (rounded to the nearest of 49 equally spaced values, 
in order to match precisely the step size of the monetary condition's feedback mapping). For responses at greater than 15% difference from the 
target, participants were informed only that their response was “too far” from the target (equivalent to the monetary condition's zero cent feedback)
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mapping function M from Equation 1 was replaced with the 
instruction mapping function I:

Crucially, to ensure strict equivalence in the feedback 
information provided between the instructive and monetary 
feedback conditions, instructive feedback values were con-
strained to follow an equivalent functional form to monetary 
feedback (compare Figure 1b,c). This was done by rounding 
instructive feedback values to the nearest value in the set {0, 
0.625, 1.25, 1.875,..., 15}. For any given sequence of choices, 
therefore, feedback in the two conditions provided identical 
information regarding the target contrast. Consequently, any 
differences in task performance between instructive and 
monetary conditions cannot be attributed to differences in the 
information content of feedback.

Participants completed a total of 14 blocks of trials of 
the task over approximately 50 min. Monetary and instruc-
tive conditions were presented in seven consecutive blocks 
each, with the starting condition counterbalanced across 
participants. Each block had a different target contrast, se-
lected pseudorandomly from the interval [25%, 85%]. Blocks 
ran until cumulative checkerboard presentation duration ex-
ceeded 3 min or until 25 trials were completed, whichever 
occurred sooner. As a result, the number of trials per block 
varied across participants, ensuring that they could not hurry 
through the task in an attempt to trade off experiment du-
ration against monetary winnings. Upon receiving feedback, 
participants were not informed of the exact numerical con-
trast level of their choice; instead, the checkerboard remained 
on screen at the chosen contrast while written feedback was 
presented (Figure 1a). As a result, learning was necessarily 
affected by perceptual uncertainty regarding the identity 
of the chosen contrast. Prior to the task, participants were 
trained in interpretation of feedback in both feedback condi-
tions, and testing commenced only when a satisfactory level 
of task understanding was evident.

Stimuli were presented using a Sony Trinitron G420 
CRT monitor at a frame rate of 120 Hz. During task perfor-
mance, participants were seated comfortably in a darkened 
room, using a chin rest at a fixation distance of 77 cm from 
the screen. Checkerboard stimuli were 560 × 560 pixels in 
size, measuring 19.5 × 19.5 cm on the screen and subtend-
ing14.43  ×  14.43 degrees of visual angle. Responses were 
recorded using a five‐button Cedrus Response Box. All other 
task parameters were identical to those employed by Bennett 
et al. (2015), with the exception that the checkerboard in 
the present task did not phase‐reverse and therefore had a 
smoothly changing (rather than flickering) appearance.

2.3  |  Model‐based estimates of 
belief updating

A Bayesian grid estimator (Moravec, 1988), as described and 
implemented for the reward learning task used by Bennett 
et al. (2015), was used to quantify dynamic aspects of belief 
updating in terms of the degree of participants' belief uncer-
tainty on a given trial and the magnitude of belief updating 
across trials as new feedback information was imparted. 
This estimator calculated a probabilistic estimate of par-
ticipants' beliefs regarding the level of the target contrast in 
each trial and used this belief distribution to estimate choice 
likelihoods. Formally, beliefs were described by a probabil-
ity mass function θ over a contrast space discretized into J 
equally sized bins, where the value of the function θ at each 
bin represented the participant's subjective probability that 
the target contrast (denoted rt) fell within bin j on trial t. Bins 
had a width of 0.61% contrast, resulting in a belief distribu-
tion that contained J = 148 contrast bins on the interval [10, 
100]. This value was chosen because it was the largest value 
sufficient to resolve different values of monetary feedback. 
On each trial t, participants observed the feedback ft after the 
choice of contrast bin xt, determined according to the mon-
etary and instructive feedback mapping functions M and I as 
specified by Equations 1 and 2, respectively. Belief estimates 
were initialized in each block as a discrete uniform distribu-
tion, representing participants' a priori uncertainty regarding 
the target contrast level. This belief distribution was then up-
dated sequentially according to Bayes' rule as feedback was 
received, such that the posterior distribution of trial t formed 
the prior distribution for trial t + 1:

The left‐hand side of Equation 3 represents the posterior 
belief distribution for contrast bin j following trial t and is 
calculated by multiplying the participant's prior belief that 
the target contrast fell within bin j, θt(j) by the likelihood of 
observing the choice/feedback pair (ft, xt) if the target were in 
bin j, Pr(ft, xt|rt ∈ j), and dividing by the marginal likelihood 
of the update, Pr(ft, xt).

As noted above, variability in task performance between 
participants was captured by the response uncertainty pa-
rameter σ. Formally, σ represents the standard deviation of 
the Gaussian noise affecting belief updates after feedback 
receipt, such that larger values of σ indicate a greater degree 
of noise in the updating process and therefore more impre-
cise belief updates. Since participants were not informed of 
the numerical value of the contrast they had chosen but had 
to estimate this chosen contrast from the visual display, this 
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response uncertainty therefore also results in a Gaussian prior 
over chosen contrast. For a complete discussion of the mathe-
matical role of σ in the Bayesian updating model, see Bennett 
et al. (2015).

To estimate choice likelihood, this model used a proba-
bility of maximum utility choice rule (cf. Speekenbrink & 
Konstantinidis, 2015), whereby contrast bins with a higher 
probability of containing the target contrast had a proportion-
ally higher probability of being chosen, subject to response 
uncertainty during choice:

As such, on each trial the choice likelihood probability mass 
function was determined by convolving the prior belief dis-
tribution by the uncertainty function G0 over the set of con-
trast bins J, where k is a normalization constant and square 
brackets denote the domain of convolution. Intuitively, this 
response model implies that response probabilities are de-
rived by the addition of Gaussian noise to the target contrast 
distribution J. The uncertainty function G0 was a zero‐mean 
Gaussian function of the contrast difference between the true 
chosen contrast xt and each bin xj of the distribution θ. This 
function was also parameterized by σ (truncated to the avail-
able range of contrasts):

In the implementation of the Bayesian grid estimator used 
in the present study, the likelihood function reflected the 
participant's uncertainty regarding which contrast he or she 
had chosen. The implication of this is that if a participant 
had perfect knowledge of exactly which contrast he or she 
had chosen, Pr(ft,xt) would simply be chosen such that the 
posterior distribution integrated to unity. However, here 
we instead made the more plausible assumption that par-
ticipants had imperfect knowledge of which contrast they 
chose (e.g., if the true chosen contrast was 50%, the partic-
ipant might “know” only that they had chosen some con-
trast between 40% and 60%). Under these circumstances, 
Bayesian principles dictate that the participant ought to 
weight the belief update by their uncertainty regarding 
the chosen contrast. This can be achieved by considering 
the marginal likelihood not as a point value but as a set 
of candidate contrasts varying in subjective probability 
and integrating across this set to determine the magnitude 
of the belief update. In the present study, we modeled the 
response uncertainty as Gaussian noise around the true 
chosen contrast, with mean zero and standard deviation de-
termined as a parameter σ fit individually to participants. 

The parameter σ was estimated with maximum likelihood 
estimation using the MATLAB Optimization Toolbox (The 
Mathworks, Natick, MA) and was fit separately to instruc-
tive and monetary conditions for each participant. In esti-
mating σ, we assumed that the Gaussian noise distribution 
was truncated such that zero probability was assigned to 
contrast bins that were not displayed during the experiment 
(i.e., those outside the interval [10, 100]).

Model estimations of subjective belief distributions were 
used to calculate two variables of interest on each trial: belief 
uncertainty prior to the receipt of feedback and postfeedback 
belief update magnitude. These allowed us to represent par-
ticipants' belief states as a function of previously observed 
evidence and the subjective information content of feedback. 
A formal encapsulation of the model can be found in Bennett 
et al. (2015). Briefly, we defined belief uncertainty as the 
Shannon entropy (Shannon, 1948) over contrast bins of the 
prior distribution:

Because the entropy H of a probability distribution reflects 
the uncertainty coded by those probabilities, higher values of 
entropy in the belief distribution correspond to greater levels 
of belief uncertainty. An entropy of zero is observed only in 
the case of complete certainty, where all probabilities in the 
distribution but one are zero. The entropy in a distribution 
is maximal when all probabilities are equal, as in a uniform 
distribution (Bennett et al., 2015).

Belief update magnitude was calculated as the mutual in-
formation of feedback. This quantity provides an indication 
of the degree by which uncertainty has been resolved in the 
updating from prior (before feedback) to posterior (after feed-
back) probabilities. It corresponds to the information content 
(V) of the feedback: more informative feedback promotes a 
greater reduction in uncertainty from prior to posterior be-
liefs. Larger values of V indicated a greater resolution of un-
certainty (and, hence, a larger belief update). We calculated 
mutual information as the difference in entropy between prior 
and posterior belief distributions:

Both belief uncertainty and belief update magnitude thus 
provided model‐based estimates that allowed us to com-
pare the updating of beliefs across trials in the two feed-
back conditions; namely, an estimate of the reduction in 
uncertainty of beliefs as a result of feedback (belief uncer-
tainty) and the degree to which that feedback was usefully 
applied by participants in updating their beliefs about the 
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location of the target contrast in contrast space (belief up-
date magnitude). We anticipated that feedback in the form 
of monetary reward would yield larger reductions in belief 
uncertainty as well as belief updates of greater magnitude, 
when compared to instructive feedback. Multiple linear re-
gression was used to examine whether belief uncertainty 
and trial number (an indicator of learning improvement 
with time) could predict behavioral performance in terms 
of the choice error (the percent contrast difference between 
the chosen and target contrasts). Regressions were per-
formed across trials for each participant separately, and the 
resulting β coefficients were subjected to single sample t 
tests to assess whether the effect of the predictors was sig-
nificantly greater than zero across participants.

2.4  |  EEG data acquisition

The EEG was recorded from 35 Ag/AgCl active scalp elec-
trodes (Fp2, AF7, AF3, AFz, AF4, AF8, F5, F1, Fz, F2, F4, 
F6, FC1, FCz, FC4, FC6, C5, C3, Cz, C4, CP5, CP3, CP1, 
CPz, CP6, P5, P1, Pz, P4, P6, POz, PO8, O1, Oz, Iz in the 
International 10‐20 system). Electrodes interfaced with a 
BioSemi ActiveTwo 64‐channel system running ActiView 
acquisition software and used an implicit reference during 
recording. Due to technical problems with electrode hard-
ware, not all 64 channels could be recorded for all partici-
pants. Therefore, based on previous (Bennett et al., 2015) 
and planned analyses, data were acquired from prespeci-
fied channels of interest, including all frontocentral and 
centroparietal midline electrodes. All electrode channels 
included in subsequent ERP analyses were recorded with-
out issue for all participants, and data quality was not com-
promised. Data were linearly detrended and rereferenced 
offline to an average of left and right mastoid electrodes. 
The vertical and horizontal electrooculogram (EOG) were 
recorded from electrodes infraorbital and horizontally ad-
jacent to the left eye. EEG was recorded at a sampling rate 
of 512 Hz.

Preprocessing of data was performed using a semiauto-
mated preprocessing pipeline (cf. Bode, Bennett, Stahl, & 
Murawski, 2014; Brydevall, Bennett, Murawski, & Bode, 
2018). Data were first manually screened to exclude epochs 
contaminated by skin potential or muscle artifacts. Using a 
linear FIR filter, data were then high‐pass filtered at 0.1 Hz, 
low‐pass filtered at 70 Hz, and notch filtered at 50 Hz to 
remove background electrical noise. Epochs were gener-
ated consisting of data from 1,500 ms before to 1,500 ms 
after feedback presentation. An independent components 
analysis (ICA), as implemented in the EEGLAB toolbox 
(Delorme & Makeig, 2004) for MATLAB, was performed 
on the resulting data set to identify and remove components 
related to eye movements and eyeblink artifacts. Finally, an 

automatic artifact screening procedure excluded all epochs 
from analysis in which maximum/minimum amplitudes ex-
ceeded ±200 μV.

2.5  |  ERP data analysis

We assessed three ERP components: the P3a, the FRN, 
and the LPP. Component amplitudes were calculated using 
estimation routines implemented in the ERPLAB plugin 
(Lopez‐Calderon & Luck, 2014), time‐locked to feedback 
presentation on each trial, and baseline‐corrected from 0 to 
500  ms prefeedback. P3a amplitude was calculated as the 
largest positive peak in the window from 250‒550 ms post-
feedback at the frontocentral and centroparietal midline elec-
trodes AFz, Fz, FCz, Cz, and CPz (Bennett et al., 2015). This 
time window allowed us to estimate peak amplitude within a 
symmetrical window about the peak of the P3a as identified 
in grand‐averaged waveforms.

At the same midline electrodes, FRN amplitude was calcu-
lated as the peak‐to‐peak distance between the most negative 
peak in the window from 200 to 550 ms and the immediately 
preceding positive peak (Achtziger et al., 2015; Frank et al., 
2005; Yeung & Sanfey, 2004). A peak‐to‐peak measure of 
the FRN was used rather than a mean amplitude measure to 
ensure that estimates of FRN and P3a amplitude were statisti-
cally independent of one another. Finally, LPP amplitude was 
calculated as the mean voltage within the window from 550 to 
900 ms postfeedback at the centroparietal midline electrodes 
Cz, CPz, and Pz (Hajcak, Dunning, & Foti, 2009; Ito et al.,  
1998). This time window was chosen both to accord with pre-
vious literature (e.g., Keil et al., 2002) and to ensure that P3a 
and LPP analysis windows did not overlap.

The effects of motivational factors on ERP signatures of 
belief updating were assessed in three‐way repeated mea-
sures analyses of variance (ANOVAs; 2 × 2 × 5 for the P3a 
and FRN, 2 × 2 × 3 for the LPP) with fixed within‐group 
factors of feedback condition (monetary and instructive), be-
lief update magnitude (small and large: determined according 
to a median split over trials; see below), and electrode scalp 
location (five levels for P3a and FRN analyses: AFz, Fz, FCz, 
Cz, CPz; three levels for LPP analyses: Cz, CPz, Pz), while 
participant served as a random factor.

3  |   RESULTS

3.1  |  Behavioral results

Participants completed a variable number of trials per 
block (M = 17.57; SD = 2.70). Paired samples t tests found 
no evidence to suggest that the number of trials completed 
per block differed between instructive and monetary feed-
back conditions, t(22) = 0.80, p = 0.43, and no evidence 
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to suggest that the total stimulus viewing time differed be-
tween feedback conditions, t(22) = −1.04, p = 0.31. These 
analyses suggest that participants adopted an equivalent 
speed/accuracy trade‐off in both feedback conditions. 
Behavioral performance was quantified by choice error, 
defined as the absolute difference between the chosen con-
trast and the target contrast on each trial. We investigated 
differences in choice error as a function of trial number 
and feedback condition using linear mixed‐effects analysis 
with feedback condition and trial number as fixed effects. 
Results indicated a significant main effect of trial number, 
F(24, 60.95) = 13.09, p < 0.0001, with performance gen-
erally improving over time within each block, indicating 
acceptable overall task performance (see Figure 2a). There 
was also a significant main effect of feedback condition, 
F(1, 9.29)  =  20.07, p  =  0.001, driven by better overall 
learning performance in the monetary than the instructive 
feedback condition. We found no evidence for block‐order 
effects for either the monetary, t(21) = 1.48, p = 0.15, or 
the instructive feedback condition, t(21) = −1.13, p = 0.27. 
Finally, the interaction between feedback condition and 
trial number was also significant, F(24, 60.95)  =  2.89, 
p  =  0.0004. This effect is likely to have been driven by 
greater differences between monetary and instructive feed-
back conditions in midblock trials, rather than in block 
initial trials (Figure 2a). Such a pattern stands to reason, 
since participants began each block with no a priori knowl-
edge regarding the target contrast and were just as likely 
to make a correct as an incorrect initial guess regardless of 
feedback condition. In addition, given the demand charac-
teristics of the task being performed by participants, it is 
to be anticipated that the later stages of each block would 
be associated with performance approaching an asymptotic 
level (i.e., not declining fully to zero error). The level of 
this asymptote is likely to depend upon multiple factors, 
including limits on performance associated with perceptual 
uncertainty (related to participants' limited ability to distin-
guish between nearby contrast values) and working mem-
ory limitations (related to the limited precision with which 
a given contrast value can be stored in working memory 
during learning).

3.2  |  Modeling results

Figure 2b,c display the mean model estimates for pretrial 
belief uncertainty (Shannon entropy, H, see Equation 6) 
and belief update magnitude (mutual information, V, see 
Equation 7) as a function of trial number, respectively. 
Multiple linear regression was used to predict the be-
havioral task accuracy or choice error (the absolute dif-
ference between the chosen and target contrasts) on the 
basis of trial number and belief uncertainty. With mon-
etary feedback, both trial number, mean β  =  −0.004, 

t(21)  =  −6.21, p  <  0.0001, and belief uncertainty, mean 
β  =  0.04, t(21)  =  8.61, p  <  0.0001, were significantly 
related to the choice error. Similarly, with instructive 

F I G U R E  2   Overall reward learning task performance and model‐
derived belief variables as a function of trial number across participants 
(n = 23). In all plots, monetary feedback is displayed in red, instructive 
feedback is displayed in black. (a) Mean choice error (measured as 
absolute difference between chosen and target contrasts) as a function of 
feedback condition and trial number. (b) Belief entropy, giving an estimate 
of belief uncertainty. (c) Mutual information, giving an estimate of belief 
update magnitude. Note that, in all plots, since data for blockwise averages 
were not available for all participants for trials 16‒25, only trials 1‒15 are 
displayed here. Error bars represent the standard error of the mean
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feedback, β coefficients for trial number, mean β = −0.005, 
t(21)  =  −7.59, p  <  0.0001, and belief uncertainty, mean 
β  =  0.05, t(21)  =  8.96, p  <  0.0001, significantly dif-
fered from zero, indicating that on average they were sig-
nificantly related to behavioral choice error on the task. 
Overall, these analyses indicated that belief uncertainty, as 
estimated from the Bayesian inference model, was related 
to participants' performance, even when trial‐by‐trial ef-
fects of learning (as indicated by trial number) were ac-
counted for in the regression analysis. In other words, on 
trials with greater belief uncertainty, there tended to be a 
larger error in participants' choice of stimulus contrast. This 
provides validation for the use of the Bayesian model‐de-
rived estimates of belief variables in subsequent analyses.

In the Bayesian updating model, participants' response un-
certainty was captured by the parameter σ, the standard devia-
tion of the Gaussian noise affecting the marginal likelihood of 
belief updates. Estimates of σ across participants had a mean 
value of 13.4 (SD = 4.0) in the monetary feedback condition 
and 17.22 (SD = 12.43) in the instructive feedback condition. 
A paired samples t test found that this difference was not sta-
tistically significant, t(21) = 1.51, p = 0.15, perhaps due to 
the relatively high variance in estimates of σ in the instructive 
feedback condition. Values in the monetary feedback condi-
tion closely mirrored those obtained by Bennett et al. (2015) 
in their version of the task. As identified by Bennett et al., re-
sponse uncertainty estimates were positively correlated with 
participants' overall task performance, as measured by the 
mean absolute difference between the chosen and target con-
trasts across trials for both the monetary feedback condition, 
r(20) = 0.81, p < 0.0001, and the instructive feedback con-
dition, r(20) = 0.64, p = 0.001. In both conditions, therefore, 
on average individuals with less response uncertainty (smaller 
values of σ) tended to choose contrasts closer to the target con-
trast, further validating our choice of the Bayesian grid estima-
tor in describing participants' beliefs during the task.

3.3  |  ERP results

We next investigated whether any of the three relevant ERP 
components displayed analogous patterns to those observed 
in the behavioral and modeling results (see Figure 2). We 
also took the measures of belief update magnitude as esti-
mated by the model and, by way of a median split, divided 
trials into either “large” or “small” update magnitude catego-
ries. This analysis allowed us to identify electrophysiologi-
cal indices that were associated with the differential relative 
performance between monetary and instructive feedback, as 
well as any that might reflect the updating of belief states 
across trials.

Scalp maps for the P3a and LPP analysis windows are 
presented in Figure 3 and depict the grand‐averaged voltage 

topography across participants for the monetary and instruc-
tive feedback conditions, as well as their difference. Figure 
3g shows the average waveform across participants at a 
representative electrode (Fz) for both feedback conditions. 
Analyses of peak latencies of each ERP component indicated 
no significant effects of feedback condition or belief update 
magnitude, at any electrode assessed. A cursory inspection 
of Figure 3 suggests that, in general, mean voltage tended to 
be of a higher amplitude for the monetary feedback condition 
compared to the instructive feedback condition in both the 
P3 (250‒550 ms) and LPP (550‒900 ms) analysis windows. 
Mean amplitudes for each ERP component according to feed-
back condition, belief update magnitude, and electrode site 
are given in Figure 4.

3.3.1  |  P3a

A 2 × 2 × 5 repeated measures ANOVA with factors of feed-
back condition (instructive, monetary), belief update mag-
nitude (small, large), and electrode site (AFz, Fz, FCz, Cz, 
CPz) revealed a significant main effect of feedback condi-
tion, F(1, 360) = 5.44, p = 0.02, np

2 = 0.01, and of electrode 
site, F(4, 360)  =  6.43, p  =  0.0001, np

2 = 0.07, but not of 
belief update magnitude, F(1, 360) = 1.63, p = 0.20, on mean 
P3a peak amplitude. The main effect of feedback condition 
was driven by the overall greater P3a amplitudes for the mon-
etary compared to the instructive conditions (see Figure 4a). 
For the main effect of electrode site, Bonferroni‐corrected 
pairwise comparisons indicated that the mean P3a amplitudes 
at CPz, FCz, and Cz were all significantly greater than that 
at AFz (p = 0.0002, p = 0.02, and p = 0.001, respectively), 
across feedback conditions and belief update magnitudes. 
Although the grouped bars of Figure 4a suggest that there 
was a trend for an interaction between feedback condition 
and belief update magnitude, with P3a amplitudes being gen-
erally larger with larger belief updates and larger still with 
monetary feedback, the interaction term was not significant, 
F(1, 360) = 0.0001, p = 0.98. Similarly, the other two‐way 
interaction and the three‐way interaction were all nonsignifi-
cant (p > 0.10).

3.3.2  |  FRN

A 2 × 2 × 5 repeated measures ANOVA with within‐group 
factors of feedback condition (instructive, monetary), belief 
update magnitude (small, large), and electrode (AFz, Fz, 
FCz, Cz, CPz) indicated a significant main effect of feedback 
condition on FRN amplitude, F(1, 360) = 18.91, p < 0.0001, 
np

2 = 0.05, with larger FRNs elicited by instructive than re-
warding feedback (see Figure 4b). Since in the present study 
the FRN was measured as a peak‐to‐peak change in voltage, 
this finding indicates that the FRN component decreased 
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further from the preceding positive peak (i.e., became more 
negative) in the instructive condition than in the rewarding 
condition. All other main effects and interactions were non-
significant (all ps > 0.10).

3.3.3  |  LPP

A 2 × 2 × 3 repeated measures ANOVA with within‐group 
factors of feedback condition (instructive, monetary), belief 
update magnitude (small, large), and electrode (CPz, Pz, Cz) 
revealed a significant main effect of feedback condition on 
mean LPP amplitude, F(1, 216) = 13.99, p = 0.0002, np

2 = 
0.06. As with the P3a peak amplitudes, this effect denotes the 
larger overall mean amplitude for the monetary feedback con-
dition compared to the instructive feedback condition (Figure 
4c). There were no significant main effects of belief update 
magnitude, F(1, 216) = 0.28, p = 0.60, or electrode site, F(2, 
216) = 0.28, p = 0.96, and none of the two‐way interactions 
nor the three‐way interaction were significant (all ps > 0.10).

3.4  |  Regression analyses

Although the Bayesian model‐derived estimates of belief up-
date magnitude did not influence mean amplitudes of any of 
the ERP components investigated, it is possible that model‐
derived belief state variables could serve as a predictor for 
neural signatures of the underlying updating process when 
the actual value of monetary reward is accounted for. We 
therefore conducted multiple linear regressions for each ERP 

component, electrode site, and feedback condition, to test 
whether model‐derived belief state variables (belief update 
magnitude and belief uncertainty) might serve as predictors 
for ERP amplitudes when the value of reward is also encap-
sulated in the statistical model. Regressions were performed 
separately for monetary and instructive feedback conditions, 
using reward value (fixed at zero in the instructive condition) 
and model‐derived belief update magnitude as predictors for 
P3a and LPP amplitudes. Because the FRN has been linked 
to the evaluation of feedback outcomes and the magnitude 
of a reward prediction error associated with reward learn-
ing (Achtziger et al., 2015; Holroyd & Coles, 2002; Miltner, 
Braun, & Coles, 1997; Yeung & Sanfey, 2004), we expected 
it to reflect belief uncertainty rather than belief update mag-
nitude; hence, we tested its utility as a predictor of FRN 
amplitude, along with reward value. Trial number was also 
included as an additional predictor in all regression analyses 
to ensure that any observed relationships were not the result 
of time‐on‐task effects within each block.

R2 and β coefficients derived from each regression are 
given in Tables 1‒3 for each ERP component below. In 
short, for monetary feedback, belief update magnitude was 
positively related to FRN amplitude at the central midline 
electrode sites CPz and Cz when reward value, trial number, 
and belief uncertainty were accounted for. For the LPP, be-
lief uncertainty was positively associated with amplitude at 
electrode Cz, and reward value was significantly related to 
LPP amplitude at all electrodes tested (Pz, CPz, Cz). Belief 
update magnitude, however, was not significantly related to 

F I G U R E  3   Scalp maps of grand‐averaged voltages for monetary and instructive feedback conditions as well as their difference (in μV), for 
the different analysis windows, as well as the mean waveform for the two feedback conditions at a representative electrode (n = 19). Top row (a‒c): 
P3 analysis window (250‒550 ms postfeedback onset). Bottom row (d‒f): LPP analysis window (550‒900 ms postfeedback onset). Left column 
(a, d): Mean voltage in the instructive feedback condition. Centre column (b, e): Mean voltage in the monetary feedback condition. Right column 
(c, f): Mean voltage differences across the two conditions. For all scalp maps, voltages at missing electrodes have been reconstructed using spline 
interpolation for display purposes only. (g) Grand‐averaged feedback‐locked ERP waveforms at electrode Fz, grouped by feedback condition (red: 
monetary feedback; black: instructive feedback). Time 0 denotes the onset of task performance feedback. The gray shaded region highlights the P3 
analysis window used here
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P3a amplitude, and trial number was not significantly re-
lated to any ERP component at any electrode. There were 
no significant regression models for instructive feedback. 
This, however, was expected since in those models reward 
value was fixed at zero and thus could not account for any 
of the variance (results not reported here). In addition, the 
pattern of regression results was not substantively altered 
if Kullback‐Leibler divergence was used instead of mutual 

information as a measure of belief update magnitude (cf. 
O'Reilly et al., 2013).

4  |   DISCUSSION

Within a Bayesian computational modeling framework, the 
present study set out to identify the effects of motivational 

F I G U R E  4   Mean ERP component 
amplitudes as a function of feedback 
condition, electrode site, and belief update 
magnitude (divided into two bins by way 
of a median split: large or small, according 
to model‐derived estimates). The two wide 
bars on the left show mean amplitudes 
marginalized across electrodes (black bars: 
instructive feedback; red bars: monetary 
feedback). Grouped bars to the right show 
the same data separately for electrode site 
and belief update magnitude (white bars: 
instructive feedback, small update; gray 
bars: instructive feedback, large update; 
pink bars: monetary feedback, small 
update; orange bars: monetary feedback, 
large update). In all plots, error bars 
represent the standard error of the mean. 
*p < 0.05. (a) P3a amplitudes at electrodes 
CPz, AFz, Fz, FCz, and Cz. We observed 
a significant main effect of feedback 
condition, such that monetary feedback 
was associated with larger P3a components 
than instructive feedback, in addition to 
a main effect of electrode site. (b) FRN 
amplitude at electrodes CPz, AFz, Fz, FCz, 
and Cz. FRNs were significantly larger 
in the instructive feedback condition than 
the monetary feedback condition. (c) LPP 
amplitude at electrodes Pz, CPz, and Cz. 
We observed a significant effect of feedback 
condition, such that monetary feedback was 
associated with larger LPP components than 
instructive feedback
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factors on the updating of beliefs and on the electrophysi-
ological correlates of belief updating. Concretely, we aimed 
to differentiate between the effects of monetary reward and 
the effects of the information content of feedback alone. We 
quantified these variables with respect to behavior in a simple 
reward learning paradigm and studied the effects of a mon-
etary incentive manipulation on three components of the ERP 
with an established role in learning and/or evaluating the  
reward value of stimuli: the P3a, FRN, and the LPP (Achtziger 
et al., 2015; Bennett et al., 2015; Frank et al., 2005; Goldstein 
et al., 2006; Hajcak et al., 2009; Ito et al., 1998; Jepma et 
al., 2016; Keil et al., 2002; Polich, 2007; Sato et al., 2005; 
Yeung & Sanfey, 2004). We found that participants' choices 
were more accurate when feedback was delivered in the form 
of monetary reinforcement than when it was delivered as  
instructive directives. Belief updating in the reward learning 
task was also modeled using a Bayesian grid estimator as an 
additional tool to probe the effect of the feedback incentive 
manipulation on both behavioral and neural indices, provid-
ing model‐derived estimates of belief uncertainty (defined 
as the Shannon entropy of the belief distribution) and belief 
update magnitude (defined as the mutual information of the 
feedback) during learning. Model‐based estimates of belief 
uncertainty predicted behavioral performance on the task in 
both feedback conditions, such that greater belief uncertainty 
was associated with a larger choice error. Similarly, results 
revealed that the processing of monetary and instructive 
feedback could be differentiated by their neural correlates as 
reflected in the ERP components assessed. On average, am-
plitudes for the P3a and the LPP were greater given monetary 
compared to instructive feedback, while the opposite pattern 
was observed with the FRN.

The ERP analyses employed here suggest that, like behav-
ior, neural encoding of feedback in belief updating differed 
depending on the presence or absence of monetary reward, 
even when the net amount of information provided to the 
decision maker was equivalent. The P3a has been linked in 
past research to the process of Bayesian belief updating with 
a frontocentral topography (Bennett et al., 2015; Kolossa 
et al., 2015), and it has been proposed that P3a amplitude  
indexes the magnitude of belief updates, possibly reflecting 

the deployment of working memory in the revision of prior 
beliefs (Kopp, 2008). Typically, Bayesian inference involves 
updating a full belief distribution, a notion also in line with 
the proposal by Kok (1997) that P3 amplitude may reflect 
general cognitive effort, since Bayesian belief updating re-
quires a greater expenditure of cognitive resources than 
other potential mental strategies such as simple heuristics. 
Interestingly, studies that have identified a centroparietal 
influence on P3 amplitude tended to rely on paradigms in-
volving infrequent stimuli in order to elicit the P3, such as 
variations of the oddball task (e.g., Kleih et al., 2010; Mars et 
al., 2008); however, an effect of belief update on P3a ampli-
tude has also been demonstrated in the same reward learning 
task as that used here (Bennett et al., 2015). Note that because 
we implemented two conditions in the present study, with one 
condition showing smaller belief updates than in the previous 
study, we could not implement the same analysis as Bennett 
et al. (2015). Our results, however, clearly demonstrate the 
effect of monetary reward on the P3a component.

Differential encoding of feedback in the LPP, by contrast, 
may reflect sustained sensitivity to the reward valence of 
feedback rather than on belief updates per se. In tasks assess-
ing encoding of affective stimuli, LPP amplitude has been 
associated with the affective salience of stimuli, such that 
both positively and negatively valenced stimuli elicited larger 
LPPs than neutral stimuli (Keil et al., 2002; Schupp et al., 
2000). Our results showed a differential effect of feedback 
on the LPP, with overall greater amplitudes for monetary 
compared to instructive feedback. Multiple linear regression 
analyses also indicated that belief uncertainty was positively 
related to LPP amplitude at electrode Cz when other regres-
sors including belief update size and the value of feedback 
reward were accounted for.

In addition, we observed an overall effect of feedback con-
dition on FRN amplitude, with a larger FRN for instructive 
compared to monetary feedback. Since we measured the FRN 
as a peak‐to‐peak change in amplitude from the immediately 
preceding positive peak, to say that the FRN component was 
larger in the instructive condition is equivalent to concluding 
that the FRN was more negative in the instructive condition 
than the monetary condition. This effect is therefore in the 

T A B L E  3   Regression analyses of LPP component in monetary feedback condition

Pz CPz Cz

β t p R2 β t p R2 β t p R2

Reward value 186.90 3.18 0.006

0.49

206.77 3.86 0.001

0.54

242.6 5.01 0.0002

0.66
Belief update 
magnitude

1.87 0.07 0.94 −12.28 −0.50 0.62 −13.37 −0.61 0.55

Belief uncertainty 5.57 1.43 0.17 6.77 1.91 0.07 8.98 2.80 0.01

Trial number −0.20 −1.42 0.18 −0.18 −1.35 0.20 −0.24 2.06 0.06

Note: R2 values are for the regression model as a whole, including the intercept term.
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same direction as that observed for P3a and LPP components, 
which were measured as mean voltages rather than peak‐to‐
peak voltage changes. This finding is in line with the hypoth-
esis that FRN amplitude reflects a relatively automatic binary 
evaluation of stimulus valence (Yeung & Sanfey, 2004) and 
may provide an electrophysiological index of affective com-
ponents of feedback processing (Keil et al., 2002; Schupp 
et al., 2000; Wiswede, Münte, Goschke, & Rüsseler, 2009). 
The differential FRN elicited by monetary and instruc-
tive feedback in the present study may be indicative of the 
greater overall hedonic value of monetary feedback relative 
to instructive feedback. At two central electrodes, we further 
found that the model‐derived estimate of belief update mag-
nitude was positively related to FRN amplitudes when reward 
value was taken into account. Such a result suggests a role of 
the FRN in belief updating per se beyond motivational as-
pects and warrants further research into how the FRN might 
be linked to integrating stimulus valence into belief updating.

What is the mechanism driving the effect of reward on 
performance in our task? A key feature of the present reward 
learning paradigm was that reward (in the monetary condi-
tion) was always paired with feedback, while this was not the 
case in the instructive feedback condition, similar to other 
reward learning studies (e.g., Bonner, Hastie, Sprinkle, & 
Young, 2000). Further, the current task required continuous 
update of beliefs in an optimally Bayesian manner, instead 
of simple binary decisions. When feedback is utilized as 
both an indication of monetary gain and as a learning tool, 
it is reasonable to infer that participants would have a greater 
motivational incentive to perform optimally, potentially be-
cause the small gains in reward were present during learning. 
Such an increased motivational drive might have led to an 
increased investment in cognitive resources and potentially to 
either an optimized use of Bayesian strategies, an increase in 
trials in which a Bayesian strategy was utilized for individual 
participants, or an increase in the number of individuals who 
utilized such strategies. In the instructive feedback condition, 
on the other hand, participants might have felt less motiva-
tion to use a computationally demanding Bayesian updating 
strategy (or fewer participants might have consistently done 
so), because they could only rely on intrinsic reward to exe-
cute the task correctly, leading to relatively weaker perfor-
mance. This notion is specifically in line with reinforcement 
learning theory where individuals, as biological agents, re-
spond to environmental stimuli in ways that will result in the 
maximization of reward and minimization of loss (O'Hara, 
Hall, van Rijsbergen, & Shadbolt, 2006; Ravindran, 2013). 
However, we note that there are a number of different ways in 
which participants' behavior may have deviated from Bayes 
optimality, and the results of this study do not serve to fully 
disambiguate between these. For instance, one possibility is 
that participants in the instructive condition were more likely 
to adopt an entirely non‐Bayesian heuristic strategy (such as 

win‐stay‐lose‐shift); another is that they performed a form 
of probabilistic belief revision that underweighted the un-
certainty of the prior distribution; finally, still another pos-
sibility is that Bayesian belief revision was employed in both 
conditions, but that the precision of updating was lower in 
the instructive feedback conditions. Future studies could fur-
ther investigate these hypotheses. In particular, investigating 
the instructive/monetary feedback manipulation in a larger 
sample size would have more power to detect a difference 
between conditions in the σ parameter, which was not statis-
tically significant in the present study.

From a psychological and neural standpoint, there are two 
distinct subprocesses within the task that might have been 
affected by the feedback manipulation. The first is the learn-
ing process: monetary feedback may have improved learning, 
leading to participants' having more accurate representations 
of the reward structure of the task. The second is the choice 
process: participants may have translated this learned repre-
sentation into choices more accurately in the monetary feed-
back condition, since the incentives for them to do so were 
stronger. (In the framework of Bayesian decision theory, this 
distinction between the learning process and the choice pro-
cess corresponds to a distinction between belief updating and 
the cost function.) For the choice data that we collected, it is 
difficult to distinguish these two explanations, since changes 
in either process will produce indistinguishable changes in 
behavior in our task. This identifiability concern motivated 
our decision to fit choice data using a computational model 
with the same σ parameter for both the inference process and 
the choice process. This point notwithstanding, our neural re-
sults shed some light on the distinction between motivational 
effects on learning versus motivational effects on choice. 
Since our ERP data showed that the neural representation of 
feedback differed between feedback conditions at the point 
of feedback presentation, our results are, at least in part, con-
sistent with an effect of motivational state on learning. Of 
course, this finding requires further investigation and does 
not preclude the possibility that motivational state influences 
choice in other settings.

In turn, there are several underlying neural mechanisms 
that might be responsible for this effect on learning. One pos-
sibility is that the monetary feedback enhanced participants' 
attention to the task, and that this greater engagement mani-
fested in increased neural gain for feedback in the monetary 
condition (potentially suggesting a role for norepinephrine; 
see Eldar, Cohen, & Niv, 2013; Jepma et al., 2016). Another 
is that monetary feedback affected the deployment of visual 
working memory resources, such that the chosen contrast was 
represented with greater precision in the monetary feedback 
condition (Bays, Catalao, & Husain, 2009), thereby leading 
to more precise belief updating.

More broadly, our results have bearing on the hypothe-
sis that Bayesian inference represents a unifying principle of 
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neural computation (the “Bayesian brain” hypothesis; Knill &  
Pouget, 2004). This hypothesis has been applied success-
fully to domains including sensory coding and motor plan-
ning (Körding & Wolpert, 2004; Yuille & Kersten, 2006). In 
computational terms, neural processing costs comprise both 
the expense of computing action policies and the difficulty of 
learning (computational complexity vs. sample complexity). 
This situates Bayesian models of cognition within an eco-
logically valid framework in which inference is constrained 
by the cognitive resource limitations of the brain. However, 
one issue with applying Bayesian inference to higher‐level 
judgment and decision making is that Bayesian inference is 
resource intensive and therefore computationally intractable 
for many real‐world tasks (see, e.g., Bossaerts & Murawski, 
2017; Payzan‐LeNestour & Bossaerts, 2011). Indeed, much 
evidence suggests that, in many decision settings, humans fail 
to employ optimal Bayesian strategies (e.g., Cassey, Hawkins, 
Donkin, & Brown, 2016; Gigerenzer & Goldstein, 1996). 
Moreover, even in cases where Bayesian inference is tenable, 
many individuals instead appear to rely on heuristic strategies 
(e.g., Bennett et al., 2015; Steyvers, Lee, & Wagenmakers, 
2009). Although our results provide evidence for Bayesian 
inference in belief updating in general, within the context of 
the present experiment, these previous studies support the idea 
that judgment and decision making are not always performed 
using optimal Bayesian strategies. Our results further suggest 
that the reward contingencies of the environment might have 
a strong influence on whether or not beliefs are updated using 
optimal Bayesian strategies, even within the same individuals.

Our results are also broadly in line with the recently pro-
posed economic value of control framework (Shenhav et al., 
2013, 2017). This framework proposes that cognitive resources 
are allocated to tasks according to the expected value gained 
from resource use, which is given by the difference between 
expected reward and expected costs of resource use. The latter 
arise from both metabolic as well as opportunity costs. In our 
task, we manipulated reward while cognitive resource require-
ments were kept constant across conditions. Thus, expected 
reward of resource use was higher in the monetary feedback 
condition while expected costs were the same. The finding 
that participants behaved more optimally in the monetary 
feedback condition could thus be interpreted as a result of par-
ticipants allocating more cognitive resources to the task in the 
monetary feedback condition due to higher expected value, in 
turn using a more computationally intensive strategy than in 
the instructive feedback condition. Our finding of a higher P3a 
amplitude, which has previously been associated with cogni-
tive effort, in the monetary feedback condition further sup-
ports this interpretation (Shenhav et al., 2017).

Finally, the results of this study touch on an ongoing de-
bate in behavioral economics and educational psychology 
concerning the distinction between intrinsic and extrinsic 
motivation for performance. A classical finding in this respect 

is that, if an individual is already intrinsically motivated 
to perform a task, the introduction of extrinsic motivators 
(such as monetary performance incentives) can undermine 
performance by causing a decrease in intrinsic performance 
motivation (Deci, 1971). More recent findings have refined 
this notion by suggesting that intrinsic and extrinsic moti-
vation account for nonoverlapping variance in performance 
(Cerasoli, Nicklin, & Ford, 2014) or that there is a nonlinear 
interaction between intrinsic and extrinsic motivation in de-
termining performance (Lin, McKeachie, & Kim, 2003). By 
showing that monetary incentives improved perceptual learn-
ing, our results suggest that extrinsic motivation can lead to 
improved performance in simple cognitive tasks. However, 
we interpret the applications of this result only with great 
caution, given the dissimilarity between our reward learning 
task and applications such as the classroom or workplace. 
One potential link is the literature on “gamification” of class-
room and workplace tasks, in which extrinsic motivators take 
the form of computer‐game elements such as badges, points, 
or levels (Buckley & Doyle, 2016; Dicheva, Dichev, Agre, & 
Angelova, 2015). Our results suggest a candidate neuropsy-
chological process that could underlie these effects.

In summary, the present study provides evidence that mo-
tivational factors, such as the presence of monetary reward 
in performance feedback, can increase learning rates in tasks 
demanding continual belief updating. This enhancement of 
performance was independent of the information content of 
the feedback itself. The presence or absence of monetary 
reward was reflected by components of the ERP previously 
linked to motivation, feedback processing, and stimulus sa-
lience, the P3a, FRN, and LPP, respectively. Overall, our re-
sults suggest that motivational state may critically affect the 
use of Bayesian inference in belief updating.
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